Riemannian Formulation of Pontryagin’s Maximum Principle for the Optimal Control of Robotic Manipulators

Author:

Rojas-Quintero Juan AntonioORCID,Dubois François,Ramírez-de-Ávila Hedy CésarORCID

Abstract

In this work, we consider robotic systems for which the mass tensor is identified to be the metric in a Riemannian manifold. Cost functional invariance is achieved by constructing it with the identified metric. Optimal control evolution is revealed in the form of a covariant second-order ordinary differential equation featuring the Riemann curvature tensor that constrains the control variable. In Pontryagin’s framework of the maximum principle, the cost functional has a direct impact on the system Hamiltonian. It is regarded as the performance index, and optimal control variables are affected by this fundamental choice. In the present context of cost functional invariance, we show that the adjoint variables are the first-order representation of the second-order control variable evolution equation. It is also shown that adding supplementary invariant terms to the cost functional does not modify the basic structure of the optimal control covariant evolution equation. Numerical trials show that the proposed invariant cost functionals, as compared to their non-invariant versions, lead to lower joint power consumption and narrower joint angular amplitudes during motion. With our formulation, the differential equations solver gains stability and operates dramatically faster when compared to examples where cost functional invariance is not considered.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. Robot Motion Planning and Control: Is It More than a Technological Problem?

2. Robot Motion Planning

3. Robotics

4. Introduction to Robotics: Mechanics and Control;Craig,2018

5. Robot Modeling and Control;Spong,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3