Stochastic Triad Topology Based Particle Swarm Optimization for Global Numerical Optimization

Author:

Yang QiangORCID,Bian Yu-Wei,Gao Xu-Dong,Xu Dong-Dong,Lu Zhen-Yu,Jeon Sang-Woon,Zhang JunORCID

Abstract

Particle swarm optimization (PSO) has exhibited well-known feasibility in problem optimization. However, its optimization performance still encounters challenges when confronted with complicated optimization problems with many local areas. In PSO, the interaction among particles and utilization of the communication information play crucial roles in improving the learning effectiveness and learning diversity of particles. To promote the communication effectiveness among particles, this paper proposes a stochastic triad topology to allow each particle to communicate with two random ones in the swarm via their personal best positions. Then, unlike existing studies that employ the personal best positions of the updated particle and the neighboring best position of the topology to direct its update, this paper adopts the best one and the mean position of the three personal best positions in the associated triad topology as the two guiding exemplars to direct the update of each particle. To further promote the interaction diversity among particles, an archive is maintained to store the obsolete personal best positions of particles and is then used to interact with particles in the triad topology. To enhance the chance of escaping from local regions, a random restart strategy is probabilistically triggered to introduce initialized solutions to the archive. To alleviate sensitivity to parameters, dynamic adjustment strategies are designed to dynamically adjust the associated parameter settings during the evolution. Integrating the above mechanism, a stochastic triad topology-based PSO (STTPSO) is developed to effectively search complex solution space. With the above techniques, the learning diversity and learning effectiveness of particles are largely promoted and thus the developed STTPSO is expected to explore and exploit the solution space appropriately to find high-quality solutions. Extensive experiments conducted on the commonly used CEC 2017 benchmark problem set with different dimension sizes substantiate that the proposed STTPSO achieves highly competitive or even much better performance than state-of-the-art and representative PSO variants.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3