A RUL Prediction Method of Small Sample Equipment Based on DCNN-BiLSTM and Domain Adaptation

Author:

Chen Wenbai,Chen Weizhao,Liu Huixiang,Wang Yiqun,Bi Chunli,Gu Yu

Abstract

To solve the problem of low accuracy of remaining useful life (RUL) prediction caused by insufficient sample data of equipment under complex operating conditions, an RUL prediction method of small sample equipment based on a deep convolutional neural network—bidirectional long short-term memory network (DCNN-BiLSTM) and domain adaptation is proposed. Firstly, in order to extract the common features of the equipment under the condition of sufficient samples, a network model that combines the deep convolutional neural network (DCNN) and the bidirectional long short-term memory network (BiLSTM) was used to train the source domain and target domain data simultaneously. The Maximum Mean Discrepancy (MMD) was used to constrain the distribution difference and achieve adaptive matching and feature alignment between the target domain samples and the source domain samples. After obtaining the pre-trained model, fine-tuning was used to transfer the network structure and parameters of the pre-trained model to the target domain for training, perform network optimization and finally obtain an RUL prediction model that was more suitable for the target domain data. The method was validated on a simulation dataset of commercial modular aero-propulsion provided by NASA, and the experimental results show that the method improves the prediction accuracy and generalization ability of equipment RUL under cross-working conditions and small sample conditions.

Funder

Major Project of Scientific and Technological Innovation 2030

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference25 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3