Adaptive Nonsingular Terminal Sliding Mode Control for Performance Improvement of Perturbed Nonlinear Systems

Author:

Alattas Khalid A.ORCID,Vu Mai TheORCID,Mofid Omid,El-Sousy Fayez F. M.,Alanazi Abdullah K.ORCID,Awrejcewicz JanORCID,Mobayen SalehORCID

Abstract

In this study, an adaptive nonsingular terminal sliding mode control technique according to the barrier function is designed for the performance improvement and robust stability of nonlinear systems with outdoor disturbances. For this reason, a novel nonlinear sliding surface is presented based on the states of the system. The nonlinear sliding surface forces the states of the system to converge from initial conditions to zero. Subsequently, a non-singular terminal sliding control scheme is advised for the purpose of finite-time stability of the nonlinear switching surface. Finite-time stabilization of the non-singular terminal sliding surface is verified by the Lyapunov theory. For improvement of the system performance against exterior perturbation, the barrier function adaptive technique is employed to estimate the unknown upper bounds of the exterior disturbance. Finally, the advantage and productivity of the recommended control method is investigated based on the simulation results. In the simulation part, the plasma torch jerk chaotic system is considered as a case study, such that the obtained results are given in different scenarios.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3