Model Prediction and Optimization of Waste Lube Oil Treated with Natural Clay

Author:

Osman

Abstract

In this work, used lube oil was treated using natural acid-free clay. Clay was added at different amounts (5, 10, and 20 g) to 100 mL of waste engine oil at various temperatures (250, 350, 400, and 450 °C) and mixed at a speed of 800 rpm for 30 min. After settling and separation, the treated oil was diluted with kerosene before being examined using a Ultraviolet–visible (UV) spectrophotometer. In order to achieve cost-effective recycling, this process is modeled using the response surface method (RSM). Five regression models (linear, quadratic, Two Factor Interactions (2FI), cubic, and reduced-order quadratic model) were developed, then tested, and examined by calculating the statistical performance indicators (R2, R2adj, Akaike’s Information Criterion corrected (AICc), Bayesian Information Criterion (BIC), and Root Mean Square Error (RMSE)). The results obtained reveal that the modified quadratic model outperforms the rest of the models in terms of the low value of RMSE, the lowest AICc, lowest BIC, and the highest R2 and R2adj. The developed modified quadratic model is optimized successfully to predict optimum operation conditions. Results show that optimum operation conditions are at the minimum area under the curve for UV absorption at 223.358; this can be achieved with a process temperature of 266.246 °C and clay quantity of 5.331 g. This model agreed with experimental data regardless of the effectiveness of red clay in the therapy of lube oil.

Funder

king khalid University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference43 articles.

1. Waste Engine Oils: Rerefining and Energy Recovery;Audibert,2011

2. Conserve lube oil: Re-refine. [Propane-vacuum-hydrogen process];Cutler;Hydrocarb. Process,1976

3. Composition and oxidation stability of SAE 15W-40 engine oils

4. Variation in rheological properties of engine oil with usage

5. Strategies for vehicle waste-oil management: a case study

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3