Developing a Mathematical Model for Nucleate Boiling Regime at High Heat Flux

Author:

Danish Mohd,Al Mesfer Mohammed

Abstract

A mathematical model has been developed for heat exchange in nucleate boiling at high flux applying an energy balance on a macrolayer. The wall superheat, macrolayer thickness, and time are the parameters considered for predicting the heat flux. The influence of the wall superheat and macrolayer thickness on average heat flux has been predicted. The outcomes of the current model have been compared with Bhat’s constant macrolayer model, and it was found that these models are in close agreement corresponding to the nucleate pool boiling regime. It was concluded that the wall superheat and macrolayer thickness contributed significantly to conduction heat transfer. The average conduction heat fluxes predicted by the current model and by Bhat’s model are in close agreement for a thinner macrolayer of approximately 50 µm. For higher values of the wall superheat, which corresponds to the nucleate pool boiling condition, the predicted results strongly agree with the results of Bhat’s model. The findings also validate the claim that conduction across the macrolayer accounts for the main heat transfer mode from the heater surface to boiling liquid at high heat flux in nucleate pool boiling.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Critical Analysis of Pool Boiling Correlations;System Safety: Human - Technical Facility - Environment;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3