Evaluation of Equiatomic CrMnFeCoNiCu System and Subsequent Derivation of a Non-Equiatomic MnFeCoNiCu Alloy

Author:

Ter-Isahakyan Artashes1,Balk Thomas John1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA

Abstract

Investigation into non-equiatomic high-entropy alloys has grown in recent years due to questions about the role of entropy stabilization in forming single-phase solid solutions. Non-equiatomic alloys have been shown to retain the outstanding mechanical properties exhibited by their equiatomic counterparts and even improve electrical, thermal, and magnetic properties, albeit with relaxed composition bounds. However, much remains to understand the processing–structure–property relationships in all classes of so-called high-entropy alloys (HEAs). Here, we are motivated by the natural phenomena of crystal growth and equilibrium conditions to introduce a method of HEA development where controlled processing conditions determine the most probable and stable composition. This is demonstrated by cooling an equiatomic CrMnFeCoNiCu alloy from the melt steadily over 3 days (cooling rate ~4 °C/h). The result is an alloy containing large Cr-rich precipitates and an almost Cr-free matrix exhibiting compositions within the MnFeCoNiCu system (with trace amounts of Cr). From this juncture, it is argued that the most stable composition is within the CrMnFeCoNiCu system rather than the CrMnFeCoNi system. With further optimization and evaluation, a unique non-equiatomic alloy, Mn17Fe21Co24Ni24Cu14, is derived. The alloy solidifies and recrystallizes into a single-phase face-centered cubic (FCC) polycrystal. In addition to possible applications where Invar is currently utilized, this alloy can be used in fundamental studies that contrast its behavior with its equiatomic counterpart and shed light on the development of HEAs.

Funder

U.S. Department of Energy, Office of Science, Basic Energy Sciences

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3