Effect of LaCoO3 Synthesized via Solid-State Method on the Hydrogen Storage Properties of MgH2

Author:

Sazelee Noratiqah1ORCID,Md Din Muhamad Faiz2ORCID,Ismail Mohammad1ORCID,Rather Sami-Ullah3ORCID,Bamufleh Hisham S.3,Alhumade Hesham3ORCID,Taimoor Aqeel Ahmad3,Saeed Usman3ORCID

Affiliation:

1. Energy Storage Research Group, Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, Kuala Terengganu 21030, Malaysia

2. Department of Electrical and Electronic Engineering, Faculty of Engineering, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia

3. Department of Chemical and Materials Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

Abstract

One of the ideal energy carriers for the future is hydrogen. It has a high energy density and is a source of clean energy. A crucial step in the development of the hydrogen economy is the safety and affordable storage of a large amount of hydrogen. Thus, owing to its large storage capacity, good reversibility, and low cost, Magnesium hydride (MgH2) was taken into consideration. Unfortunately, MgH2 has a high desorption temperature and slow ab/desorption kinetics. Using the ball milling technique, adding cobalt lanthanum oxide (LaCoO3) to MgH2 improves its hydrogen storage performance. The results show that adding 10 wt.% LaCoO3 relatively lowers the starting hydrogen release, compared with pure MgH2 and milled MgH2. On the other hand, faster ab/desorption after the introduction of 10 wt.% LaCoO3 could be observed when compared with milled MgH2 under the same circumstances. Besides this, the apparent activation energy for MgH2–10 wt.% LaCoO3 was greatly reduced when compared with that of milled MgH2. From the X-ray diffraction analysis, it could be shown that in-situ forms of MgO, CoO, and La2O3, produced from the reactions between MgH2 and LaCoO3, play a vital role in enhancing the properties of hydrogen storage of MgH2.

Funder

Institutional Fund Projects

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3