Additive Manufacturing Technologies of High Entropy Alloys (HEA): Review and Prospects

Author:

Ron Tomer1ORCID,Shirizly Amnon1ORCID,Aghion Eli1ORCID

Affiliation:

1. Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel

Abstract

Additive manufacturing (AM) technologies have gained considerable attention in recent years as an innovative method to produce high entropy alloy (HEA) components. The unique and excellent mechanical and environmental properties of HEAs can be used in various demanding applications, such as the aerospace and automotive industries. This review paper aims to inspect the status and prospects of research and development related to the production of HEAs by AM technologies. Several AM processes can be used to fabricate HEA components, mainly powder bed fusion (PBF), direct energy deposition (DED), material extrusion (ME), and binder jetting (BJ). PBF technologies, such as selective laser melting (SLM) and electron beam melting (EBM), have been widely used to produce HEA components with good dimensional accuracy and surface finish. DED techniques, such as blown powder deposition (BPD) and wire arc AM (WAAM), that have high deposition rates can be used to produce large, custom-made parts with relatively reduced surface finish quality. BJ and ME techniques can be used to produce green bodies that require subsequent sintering to obtain adequate density. The use of AM to produce HEA components provides the ability to make complex shapes and create composite materials with reinforced particles. However, the microstructure and mechanical properties of AM-produced HEAs can be significantly affected by the processing parameters and post-processing heat treatment, but overall, AM technology appears to be a promising approach for producing advanced HEA components with unique properties. This paper reviews the various technologies and associated aspects of AM for HEAs. The concluding remarks highlight the critical effect of the printing parameters in relation to the complex synthesis mechanism of HEA elements that is required to obtain adequate properties. In addition, the importance of using feedstock material in the form of mix elemental powder or wires rather than pre-alloyed substance is also emphasized in order that HEA components can be produced by AM processes at an affordable cost.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3