Anti-Penetration Performance of Composite Structures with Metal-Packaged Ceramic Interlayer and UHMWPE Laminate

Author:

Sun Xin12,Zhang Longhui12ORCID,Sun Qitian12,Ye Ping12,Hao Wei12,Shi Peizhuo12,Dong Yongxiang12

Affiliation:

1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

2. Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, China

Abstract

The impact response of a composite structure consisting of a metal-packaged ceramic interlayer and an ultra-high molecular weight polyethylene (UHMWPE) laminate has been studied through a ballistic test and numerical simulation. The studied structure exhibits 50% higher anti-penetration performance than the traditional ceramic/metal structure with the same areal density. The metal-packaged ceramic interlayer and the UHMWPE laminate are key components in resisting the penetration. By using a metal frame to impose three-dimensional constraints on ceramic tiles, the metal-packaged ceramic interlayer can limit the crushing of the ceramic and contain the broken ceramic fragment to improve the erosion of the projectile. The large deformation of UHMWPE laminate absorbs a large amount of energy from the projectile. By decreasing the amplitude of the shock wave and changing the distribution of the impact load in the structure, the projectile has longer residence time on the interlayer. The anti-penetration performance shows within 10% variation when the impact position is varied. Due to the asymmetric deformation and high elastic recovery ability of the UHMWPE laminate, the projectile trajectory deflection is increased, and the broken ceramic fragments are restrained, thereby mitigating after-effect damage caused by the projectile after penetrating the structure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3