An Overview on the Effect of Severe Plastic Deformation on the Performance of Magnesium for Biomedical Applications

Author:

Medeiros Mariana P.1,Lopes Debora R.1,Kawasaki Megumi2ORCID,Langdon Terence G.3ORCID,Figueiredo Roberto B.1

Affiliation:

1. Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil

2. School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA

3. Materials Research Group, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, UK

Abstract

There has been a great interest in evaluating the potential of severe plastic deformation (SPD) to improve the performance of magnesium for biological applications. However, different properties and trends, including some contradictions, have been reported. The present study critically reviews the structural features, mechanical properties, corrosion behavior and biological response of magnesium and its alloys processed by SPD, with an emphasis on equal-channel angular pressing (ECAP) and high-pressure torsion (HPT). The unique mechanism of grain refinement in magnesium processed via ECAP causes a large scatter in the final structure, and these microstructural differences can affect the properties and produce difficulties in establishing trends. However, the recent advances in ECAP processing and the increased availability of data from samples produced via HPT clarify that grain refinement can indeed improve the mechanical properties and corrosion resistance without compromising the biological response. It is shown that processing via SPD has great potential for improving the performance of magnesium for biological applications.

Funder

National Science Foundation of the United States

European Research Council

Brazilian research agencies CNPq

FAPEMIG

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3