Effects of Grinding Methods and Water-to-Binder Ratio on the Properties of Cement Mortars Blended with Biomass Ash and Ceramic Powder

Author:

Pantić Vladan1,Šupić Slobodan1ORCID,Vučinić-Vasić Milica1,Nemeš Tomas1ORCID,Malešev Mirjana1ORCID,Lukić Ivan1ORCID,Radonjanin Vlastimir1

Affiliation:

1. Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

To combat environmental challenges—such as the depletion of natural resources and a high carbon footprint—and contribute to the effort of achieving zero-waste technology and sustainable development, the use of agricultural and industrial wastes in the cement industry has created a research interest. This study explores the potential of two types of harvest residue ash (HRA) and three types of ceramic waste (CP) as supplementary cementitious materials (SCMs) through: (1) the characterization of raw materials and (2) examining the physical properties and mechanical performance of cement-based mortar samples prepared with 10%, 30% and 50%wt of the selected SCMs ground into powder form as cement replacement. Two main variables were the water-to-binder ratio (w/b) and the effect of different grinding procedures. Experimental results demonstrated that flexural and compressive strengths were not significantly impaired by SCM additions of up to 50%, but higher replacement levels led to an increased permeability and higher capillary water absorption due to the dilution effect. Also, a lower w/b was shown to effectively reduce the porosity of mortar and increase its mechanical properties, allowing for higher shares of SCMs to be utilized. This study verifies the technical feasibility of cob corn ash and ceramic powder application as SCMs in mortar formulations, further promoting the practice of incorporating industrial and agricultural by-products in greener cementitious composites.

Funder

Provincial Secretariat for Higher Education and Scientific Research of the Autonomous Province of Vojvodina

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3