Fatigue Behaviors of Joints between Steel Girders with Corrugated Webs and Top RC Slabs under Transverse Bending Moments

Author:

Zhang Yun1,Yang Tao23ORCID,Luo Tingyi1,Chen Mingyu2,Chen Xiaobin2

Affiliation:

1. Guangxi Beitou Highway Construction and Investment Group Co., Ltd., Nanning 530029, China

2. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

3. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Nanning 530004, China

Abstract

Steel–concrete composite box beams are widely used in bridge engineering, which might bear transverse and longitudinal bending moments simultaneously under vehicle loads. To investigate the fatigue performance of joints between the steel girders and the top reinforced concrete (RC) slabs under transverse bending moments, a reduced scale joint between the weathering steel girder with the corrugated steel web (CSW) and the top RC slab was designed and tested under constant amplitude fatigue loads. Test results show that the joint initially cracked in the weld metal connecting the CSW with the bottom girder flange during the fatigue loading process. The initial crack propagated from the longitudinal fold to the adjacent inclined folds after the specimen was subjected to 7.63 × 105 loading cycles and caused the final fatigue failure. Compared with the calculated fatigue lives in the methods recommended by EC3 and AASHTO, the fatigue performance of the details involved in the joint satisfied the demands of fatigue design. Meanwhile, finite element (FE) models of joints with different parameters were established to determine their effect on the stress ranges at the hot spot regions of the joints. Numerical results show that improving the bending radius or the thickness of the CSW helps to reduce the stress ranges in the hot spot regions, which is beneficial to enhance the fatigue resistance of the investigated fatigue details accordingly.

Funder

Guangxi Key Research and Development

Guangxi Beitou Highway Construction and Investment Group Co., Ltd.

Guangxi Key Laboratory of Disaster Prevention and Engineering Safety

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3