Investigation of the Damage Phenomenology with Dependence on the Macroporosity and Microporosity of Porous Freeze Foams

Author:

Maier Johanna1ORCID,Werner David2ORCID,Geske Vinzenz1,Behnisch Thomas1,Ahlhelm Mathias3ORCID,Moritz Tassilo2ORCID,Michaelis Alexander2,Gude Maik1ORCID

Affiliation:

1. TU Dresden, Institute of Lightweight Engineering and Polymer Technology, Holbeinstraße 3, 01307 Dresden, Germany

2. Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Winterbergstraße 28, 01277 Dresden, Germany

3. Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany

Abstract

Freeze Foams are cellular, ceramic structures with hierarchical pore structures that are manufactured using the direct foaming process. By tailoring their morphology and strength, these foam structures are able to cover a wide range of application. Earlier works identified that pore-forming influencing factors (water and air content, suspension temperature, as well as pressure reduction rate) dictate the constitution on a macroscopic and microscopic scale. Therefore, the ability to manufacture foams whose properties align with the component requirements would be an important step in advancing towards a widespread application of these promising materials. With this goal in mind, the correlation between the pore-forming influencing factors and the resulting mechanical properties was quantified. Foams with independently adjustable porosities were produced at the micro and macro scales and evaluated according to their material failure behavior under compressive loads. As a result, foams with determined macroporosities between 38 and 62%, microporosities between 25 and 42%, and compression strengths between 1 and 7 MPa with different material failure characteristics were manufactured and systematically investigated.

Funder

DFG

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3