Effect of Supergravity Field on the Microstructure and Mechanical Properties of Highly Conductive Cu Alloys

Author:

Wang Lu1,Lan Xi1,Wang Zhe1,Guo Zhancheng1

Affiliation:

1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

Abstract

In consideration of the characteristics of supergravity to strengthen solidification structures, the effect of the supergravity field (SGF) on the grain refinement and mechanical properties of Cu-0.5Sn alloys was investigated in this paper. Firstly, it was experimentally verified that the addition of Sn could effectively refine the grain. Subsequently, the variations in grain size, tensile strength, and plasticity of the Cu-0.5Sn alloy were compared in normal and SGF conditions. The results revealed that the tensile strength and plasticity of the alloy increased with the increase in gravity coefficient. The ultimate tensile strength of the Cu-0.5Sn alloy in a normal gravity field was 145.2 MPa, while it was 160.2, 165.3, 167.9, and 182.0 MPa in an SGF with G = 100, 300, 500, and 1000, respectively, and there was almost no effect on conductivity. Finally, it was clarified that the mechanism of grain refinement by SGF was that the intense convection caused the fracture of the dendrites to become new nucleating particles. The increased viscosity under SGF hindered the diffusion of atoms in the melt and slowed down the movement of atoms toward the nucleus, leading to a decrease in grain size.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3