Affiliation:
1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Abstract
In consideration of the characteristics of supergravity to strengthen solidification structures, the effect of the supergravity field (SGF) on the grain refinement and mechanical properties of Cu-0.5Sn alloys was investigated in this paper. Firstly, it was experimentally verified that the addition of Sn could effectively refine the grain. Subsequently, the variations in grain size, tensile strength, and plasticity of the Cu-0.5Sn alloy were compared in normal and SGF conditions. The results revealed that the tensile strength and plasticity of the alloy increased with the increase in gravity coefficient. The ultimate tensile strength of the Cu-0.5Sn alloy in a normal gravity field was 145.2 MPa, while it was 160.2, 165.3, 167.9, and 182.0 MPa in an SGF with G = 100, 300, 500, and 1000, respectively, and there was almost no effect on conductivity. Finally, it was clarified that the mechanism of grain refinement by SGF was that the intense convection caused the fracture of the dendrites to become new nucleating particles. The increased viscosity under SGF hindered the diffusion of atoms in the melt and slowed down the movement of atoms toward the nucleus, leading to a decrease in grain size.
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献