Exploring Self-Supervised Vision Transformers for Gait Recognition in the Wild

Author:

Cosma Adrian1ORCID,Catruna Andy1ORCID,Radoi Emilian1ORCID

Affiliation:

1. Faculty of Automatic Control and Computer Science, University Politehnica of Bucharest, 006042 Bucharest, Romania

Abstract

The manner of walking (gait) is a powerful biometric that is used as a unique fingerprinting method, allowing unobtrusive behavioral analytics to be performed at a distance without subject cooperation. As opposed to more traditional biometric authentication methods, gait analysis does not require explicit cooperation of the subject and can be performed in low-resolution settings, without requiring the subject’s face to be unobstructed/clearly visible. Most current approaches are developed in a controlled setting, with clean, gold-standard annotated data, which powered the development of neural architectures for recognition and classification. Only recently has gait analysis ventured into using more diverse, large-scale, and realistic datasets to pretrained networks in a self-supervised manner. Self-supervised training regime enables learning diverse and robust gait representations without expensive manual human annotations. Prompted by the ubiquitous use of the transformer model in all areas of deep learning, including computer vision, in this work, we explore the use of five different vision transformer architectures directly applied to self-supervised gait recognition. We adapt and pretrain the simple ViT, CaiT, CrossFormer, Token2Token, and TwinsSVT on two different large-scale gait datasets: GREW and DenseGait. We provide extensive results for zero-shot and fine-tuning on two benchmark gait recognition datasets, CASIA-B and FVG, and explore the relationship between the amount of spatial and temporal gait information used by the visual transformer. Our results show that in designing transformer models for processing motion, using a hierarchical approach (i.e., CrossFormer models) on finer-grained movement fairs comparatively better than previous whole-skeleton approaches.

Funder

CRC research

Google IoT/Wearables Student Grants

Keysight Master Research Sponsorship

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GaitPT: Skeletons are All You Need for Gait Recognition;2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG);2024-05-27

2. On Designing a SwinIris Transformer Based Iris Recognition System;IEEE Access;2024

3. GaitMorph: Transforming Gait by Optimally Transporting Discrete Codes;2023 IEEE International Joint Conference on Biometrics (IJCB);2023-09-25

4. Gait-Based Multi-View Person Identification with Convolutional Neural Networks;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

5. Accuracy Comparison of CNN, LSTM, and Transformer for Activity Recognition Using IMU and Visual Markers;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3