Quantification of APOBEC3 Mutation Rates Affecting the VP1 Gene of BK Polyomavirus In Vivo

Author:

McIlroy DorianORCID,Peltier CécileORCID,Nguyen My-Linh,Manceau Louise,Mobuchon LenhaORCID,Le Baut Nicolas,Nguyen Ngoc-KhanhORCID,Tran Minh-Chau,Nguyen The-CuongORCID,Bressollette-Bodin CélineORCID

Abstract

Mutations in the BK polyomavirus (BKPyV) capsid accumulate in kidney transplant (KTx) recipients with persistent virus replication. They are associated with neutralization escape and appear to arise as a result of cytosine deamination by host cell APOBEC3A/B enzymes. To study the mutagenic processes occurring in patients, we amplified the typing region of the VP1 gene, sequenced the amplicons to a depth of 5000–10,000×, and identified rare mutations, which were fitted to COSMIC mutational signatures. Background mutations were identified in amplicons from plasmids carrying the BKPyV genome and compared to mutations observed in 148 samples from 23 KTx recipients in France and in Vietnam. Three mutational signatures were consistently observed in urine, serum, and kidney biopsy samples, two of which, SBS2 and SBS13, corresponded to APOBEC3A/B activity. In addition, a third signature with no known etiology, SBS89, was detected both in patient samples, and in cells infected in vitro with BKPyV. Quantitatively, APOBEC3A/B mutation rates in urine samples were strongly correlated with urine viral load, and also appeared to vary between individuals. These results confirm that APOBEC3A/B is a major, but not the only, source of BKPyV genome mutations in patients.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neutralizing Antibodies Targeting BK Polyomavirus;Journal of the American Society of Nephrology;2024-07-09

2. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses;Pathogens;2024-02-20

3. The 14th Afipp scientific days;Virologie;2024-02

4. APOBEC3 family proteins as drivers of virus evolution;Frontiers in Virology;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3