Effects of Combined Application of Potassium Silicate and Salicylic Acid on the Defense Response of Hydroponically Grown Tomato Plants to Ralstonia solanacearum Infection

Author:

Jiang Ni-Hao,Zhang Shi-Han

Abstract

Bacterial wilt, caused by soilborne pathogenic bacterium Ralstonia solanacearum, is a serious and widespread disease that affects global tomato production. Both silicon (Si) and salicylic acid (SA) play important roles in enhancing tomato resistance against bacterial wilt, however, their combined effects on the defense responses of infected tomato plants remain unknown. Hence, the combined effects of Si and SA on physiological and biochemical parameters of R. solanacearum-infected tomato plants were investigated. The combination treatment of Si and SA significantly decreased disease incidences, lipoxygenase (LOX) activity and ethylene (ET) production. The combined treatments were more prominent in improving the morphological traits of root systems, such as root length, root surface area, average root diameter and root volume. The activities of polyphenol oxidase (PPO) and peroxidase (POD) and the concentrations of total soluble phenolics (TSPs) and lignin-thioglycolic acid (LTGA) derivatives were significantly increased in the plants with combined treatments. Si in combination with SA could significantly enhance neutral invertase (NI) and acid invertases (AI) activities in the leaves of tomato plants at 3 days post-infection (dpi) compared with application of Si alone. Three defense-related genes, PAL, POD and pathogenesis-related protein 1 (PR1), were significantly induced in Si+SA treatment at 7 dpi when compared with individual application of Si or SA. The expression level of salicylic acid-binding protein 2 (SABP2) was significantly higher for combination treatment when compared with treatment of Si or SA alone. The possible mechanisms involved in the synergistic effects of Si and SA on the control of tomato bacterial wilt were proposed. This study indicates that under hypertonic conditions, the combined application of 2.0 mM potassium silicate (K2SiO3) and 0.5 mM SA had a synergistic effect on the control of tomato bacterial wilt.

Funder

the Scientific Research Fund of Yunnan Provincial Education Department

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3