AIS and VMS Ensemble Can Address Data Gaps on Fisheries for Marine Spatial Planning

Author:

Thoya PascalORCID,Maina Joseph,Möllmann Christian,Schiele Kerstin S.

Abstract

Spatially explicit records of fishing activities’ distribution are fundamental for effective marine spatial planning (MSP) because they can help to identify principal fishing areas. However, in numerous case studies, MSP has ignored fishing activities due to data scarcity. The vessel monitoring system (VMS) and the automatic identification system (AIS) are two commonly known technologies used to observe fishing activities. However, both technologies generate data that have several limitations, making them ineffective when used in isolation. Here, we evaluate both datasets’ limitations and strengths, measure the drawbacks of using any single dataset and propose a method for combining both technologies for a more precise estimation of the distribution of fishing activities. Using the Baltic Sea and the North Sea–Celtic Sea regions as case studies, we compare the spatial distribution of fishing effort from International Council for the Exploration of the Seas (ICES) VMS data and global fishing watch AIS data. We show that using either dataset in isolation can lead to a significant underestimation of fishing effort. We also demonstrate that integrating both datasets in an ensemble approach can provide more accurate fisheries information for MSP. Given the rapid expansion of MSP activities globally, our approach can be utilised in data-limited regions to improve cross border spatial planning.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

1. Competition for marine space: modelling the Baltic Sea fisheries and effort displacement under spatial restrictions

2. A Global Map of Human Impact on Marine Ecosystems

3. Baltic Sea Plan Vision 2030: Towards the Sustainable Planning of Baltic Sea Space;Gee,2011

4. Marine Spatial Planning Programme: A Step-by-Step Approach toward Ecosystem-Based-Management;Ehler,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3