Author:
Yan Binghe,Zhang Yulan,Zang Shuying,Chen Qiang,Sun Li
Abstract
In recent years, black soil has decreased and degenerated heavily due to complicated functions of natural and artificial factors. Hence, characterizing distributions of particle sizes in black soil and their environmental influencing factors is important for understanding black soil degradation. A total of 116 surface soil samples in the top 20 cm from a typical black soil region in northeastern China were collected, and the spatial distribution of particle size parameters were characterized. Particle size-sensitive components were extracted quantitatively using the log-normal distribution function, and their environmental implications were investigated. The contents of black soil mechanical composition ranged from 7.8% to 79.3% for clay, 17.7% to 80.3% for silt, and 0% to 73.7% for sand, respectively. Median particle size ranged from 1.71 to 142.67 μm, with a coefficient of variation of 60%, indicating silt accounted for the majority of the composition. Four environmentally sensitive components were identified, including long-distance transported airborne deposits of clay dust (C1), successions from local parent materials (C2), short-distance deposits of silt particles (C3), and a component strongly disturbed by human activities (C4). C1 and C2 had relatively low variations, with C1 exhibiting the smallest variation, and C2 contributing highest proportion, showing no significant differences across all samples. C3 widely existed across samples, suggesting common wind erosion within the black soil region. C3 and C4 varied spatially, which was caused by the low vegetation coverage and high human disturbance of agricultural topsoil. The results suggest that windbreaks should be encouraged to reduce wind erosion in the black soil regions.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Graduate Innovative Programs Foundation of Harbin Normal University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献