Deciphering the Effects of Waste Amendments on Particulate Organic Carbon and Soil C-Mineralization Dynamics

Author:

Ma Xiang,Zhang Qingqing,Wu Haibing,Liang Jing

Abstract

It is important to understand the dynamics of soil carbon to study the effects of waste amendment inputs on soil organic carbon decomposition. The aim of this study was to evaluate the effect of waste amendment carbon input on the soil organic carbon (SOC) content, soil particulate organic carbon (POC) content and soil organic carbon mineralization rate dynamics. A 60-day experiment was carried out in the laboratory. The following treatments were compared: (1) CK: soil without amendments; (2) FW1: soil with food waste compost (soil/food waste compost = 100:1); (3) FW2: soil with food waste compost (soil/food waste compost = 100:2); (4) GW1: soil with garden waste compost (soil/garden waste compost = 100:0.84); (5) GW2: soil with garden waste compost (soil/garden waste compost = 100:1.67); (6) FGW1: soil amendments mixture (soil/food waste compost/garden waste compost = 100:0.5:0.42); (7) FGW2: soil amendments mixture (soil/food waste compost/garden waste compost = 100:1:0.84); the inputs of amendment carbon to FW1, GW1 and FGW1 were 2.92 g kg−1, the inputs of amendment carbon to FW2, GW2 and FGW2 were 5.84 g kg−1. The results showed that the addition of waste amendments increased the amount of cumulative mineralization from 95% to 262% and accelerated the rate of soil mineralization. After adding organic materials, the change in the soil organic carbon mineralization rate could be divided into two stages: the fast stage and the slow stage. The dividing point of the two stages was approximately 10 days. When equal amounts of waste amendment carbon were input to the soil, there was no significant difference in SOC between food waste and garden waste. However, SOC increased with the amount of amendment addition. However, for POC, there was no significant difference between the different amounts of carbon input to the garden waste compost treatments. SOC and POC were significantly correlated with the cumulative emissions of CO2.

Funder

RESEARCH ON RESOURCE UTILIZATION WAYS OF WET WASTE DISPOSAL PRODUCTS

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. Development of Landscaped Landfills Using Organic Waste for Sustainable Urban Waste Management

2. Productive landscapes as a sustainable organic waste management option in urban areas

3. Research on Policy Expression and Evolution Logic in the Change of Municipal Solid Waste Management Policy in China: An Empirical Analysis Based on 169 Policy Texts from 1986 to 2018;Wan;Adm. Trib.,2020

4. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3