The Behavior of a Multi-Story Steel Frame Subject to Measured Fire Using Calibrated Simple Approach

Author:

Kim Robin E.,Piao Xingyue,An Jae Hong

Abstract

Structural steels are one of the most popular construction materials with a number of merits, such as cost-effectiveness, durability, lightweight, versatility, etc. However, when exposed to a high temperature, their thermal expansion rate is high and the strength reduces substantially, making the steel structures vulnerable to fire. So far, a number of studies have been performed to understand the behavior of steel in fire. Rigorous tests, from the material to structural level, have led the advancement of modeling techniques. Among various analytical techniques, one of the most widely used approaches is the finite element modeling (FEM). While FEM can demonstrate geometrical and material nonlinearities, due to the complexity, the approach may result in high computational loads to ensure the convergence. Thus, in this paper, a simple calculation method is instead used to understand the steel frame subject to fire, in conjunction with experimentally collected temperature and displacement data. Then, at each temperature (before and after critical temperature and the formation of plastic hinges), the effect of elevated temperature on global behavior is examined using frame analysis. Results of the study have demonstrated that when structural integrity is of concern, the critical temperature of the structure must be examined in terms of fundamental characteristics of the structure.

Funder

Hanyang University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference25 articles.

1. Facts for Steel Buildings: Fire;Gewain,2003

2. Compendium of U.K. Standard Fire Test Data: Unprotected Structural Steel, 1;Wainman,1988

3. Compendium of U.K. Standard Fire Test Data: Unprotected Structural Steel, 2;Wainman,1989

4. BRE Cardington Steel Framed Building Fire Tests;Lennon,2016

5. Elastic and plastic methods for numerical modelling of steel structures subject to fire

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3