Cooling Effect of Paddy on Land Surface Temperature in Cold China Based on MODIS Data: A Case Study in Northern Sanjiang Plain

Author:

Du ,Liu ,Pan ,Yang ,Wang

Abstract

Fast-growing crops have been evolved in North China, accompanied by intense paddy expansion, leading to dramatic impacts on the agricultural environment. Among these environmental issues, the impact of paddy expansion on land surface temperature is still unclear. In the present study, based on Landsat images and MODIS land surface temperature (LST) products, the crop pattern and monthly LST in the northern Sanjiang Plain are obtained. A 1 km scale grid unit is built to investigate the relationship between LST and paddy expansion. The results obtained from the study are as follows. Firstly, for crop patterns, cropland planting is given priority to paddy fields, accompanied by an aggregated pattern, while upland crops present a discrete pattern. Secondly, for LST changes during the growing season, the maximum LST occurs in June, and the lowest values occur in October across the whole region. In addition, the LST of paddy fields is lower compared with that of upland crops for the whole growing season. Thirdly, at the 1 km grid scale, the relationship between monthly LST and paddy field ratio is significantly negative, and better represented by a cubic function rather than a linear fit. Finally, LST decreases with the increased fraction of the rice paddy area more rapidly when rice paddy is aggregated and accounted for by more than 80% of each study grid. The findings of this study are important to guide agricultural production and to better understand the environmental effects of paddy expansion in cold regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3