Eco-Speed Guidance for the Mixed Traffic of Electric Vehicles and Internal Combustion Engine Vehicles at an Isolated Signalized Intersection

Author:

Liu KaiORCID,Liu Dong,Li Cheng,Yamamoto ToshiyukiORCID

Abstract

Although electric vehicles (EVs) have been regarded as promising to reduce tailpipe emissions and energy consumption, a mixed traffic flow of EVs and internal combustion engine vehicles (ICEVs) makes the energy/emissions reduction objective more difficult because EVs and ICEVs have various general characteristics. This paper proposes a low-emission-oriented speed guidance model to address the energy/emission reduction issue under a mixed traffic flow at an isolated signalized intersection to achieve the objective of reducing emissions and total energy consumption while reducing vehicle delay and travel time. The total energy/emissions under different market penetration rates of EVs with various traffic volumes are analyzed and compared. Numerical examples demonstrate that the proposed speed guidance model has better performance than those without considering the impact of queues. For a certain traffic volume, the energy/emission reduction effects under speed guidance will increase with an increasing share of EVs. This paper also explores the impact of the time interval for guidance renewal on vehicle emissions in practice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3