A Support Vector Machine-Based Approach for Bolt Loosening Monitoring in Industrial Customized Vehicles

Author:

Carone Simone1ORCID,Pappalettera Giovanni1ORCID,Casavola Caterina1,De Carolis Simone1,Soria Leonardo1ORCID

Affiliation:

1. Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona n. 4, 70125 Bari, Italy

Abstract

Machine learning techniques have progressively emerged as important and reliable tools that, when combined with machine condition monitoring, can diagnose faults with even superior performance than other condition-based monitoring approaches. Furthermore, statistical or model-based approaches are often not applicable in industrial environments with a high degree of customization of equipment and machines. Structures such as bolted joints are a key part of the industry; therefore, monitoring their health is critical to maintaining structural integrity. Despite this, there has been little research on the detection of bolt loosening in rotating joints. In this study, vibration-based detection of bolt loosening in a rotating joint of a custom sewer cleaning vehicle transmission was performed using support vector machines (SVM). Different failures were analyzed for various vehicle operating conditions. Several classifiers were trained to evaluate the influence of the number and location of accelerometers used and to determine the best approach between specific models for each operating condition or a single model for all cases. The results showed that using a single SVM model with data from four accelerometers mounted both upstream and downstream of the bolted joint resulted in more reliable fault detection, with an overall accuracy of 92.4%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3