Study on Early Hydration Mechanism of Double-Liquid Grouting Material Modified by Composite Early Strength Agent

Author:

Chen Xinming12,Wang Jie12,Jiao Huazhe12ORCID,Yang Zhi12,Zheng Diantao12,Sun Jinyu12

Affiliation:

1. Henan Key Laboratory of Underground Engineering and Disaster Prevention and Control, Henan Polytechnic University, Jiaozuo 454150, China

2. College of Civil Engineering, Henan Polytechnic University, Jiaozuo 454150, China

Abstract

To achieve an adjustable setting time and significantly improved early strength of a new type of sulphoaluminate cement-based double-liquid grouting material (SACDL), the effects of calcium formate, sodium sulfate, lithium carbonate, and a composite early strength agent on the setting hardening and early hydration behavior of SACDL paste were studied by means of setting time, fluidity, compressive strength, and viscosity tests. The results showed that the adsorption and osmosis of calcium formate, the complex decomposition of sodium sulfate, the precipitation polarization of lithium carbonate and the synergistic action of the composite early strength agent could accelerate the early hydration rate of SACDL, shorten the coagulation time, and improve the early strength of SACDL. The composite effect of 0.8% calcium formate and 0.5% sodium sulfate is the most significant in promoting coagulation and early strength; the initial setting time and final setting time of the slurry were shortened to 5 min and 10 min, respectively; and the 3 h compressive strength was capable of reaching 16.7 MPa, 31% higher than that of the blank group. In addition, X-ray diffraction and SEM morphology observation were used to study the composition of the hydration products and the evolution of the microstructure, which revealed the early hydration mechanism of SACDL under the synergistic effect of the composite early strength agent: (1) The solubility of tricalcium aluminate (C3A) and dihydrate gypsum (CaSO4·2H2O) increased under the low content composite early strength agent condition, which increased the ettringite (AFt) formation rate. HCOO− was able to penetrate the hydration layers of tricalcium silicate (C3S) and dicalcium silicate (C2S), accelerating the dissolution of C3S and C2S and promoting the early hydration of SACDL. (2) Under the condition of a high dosage of the composite early strength agent, the further increase in Ca2+ concentration promoted the crystallization nodules and precipitation of CH and accelerated the formation of calcium silicate hydrate (C-S-H) gel. C-S-H was filled between a large number of rod-like AFt crystals, thus making the structure more dense.

Funder

the double first-class construction of safety discipline of Henan Polytechnic University

the key scientific and technological project of Henan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3