Restorative Dental Resin Functionalized with Calcium Methacrylate with a Hydroxyapatite Remineralization Capacity

Author:

Zhang Xin1,Zhang Yuxuan2,Li Ying1,Wang Xiaoming3,Zhang Xueqin1

Affiliation:

1. College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China

2. FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China

3. Shuozhou Comprehensive Inspection and Testing Center, Shuozhou 036000, China

Abstract

The ability of dental materials to induce the mineralization of enamel like hydroxyapatite (HA) is of great importance. In this article, a novel kind of dental restorative material characterized by a mineralization ability was fabricated by photopolymerization. Calcium methacrylate (CMA) was introduced into the classical bisphenol A-glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) dental resin formulation. This functional dental resin (BTCM) was calcium-rich and can be prepared simply by one-step photopolymerization. The influence of CMA on the photopolymerization kinetics, the dental resin’s mechanical properties, and its capacity to induce dynamic in situ HA mineralization were examined. Real-time FTIR, compression modulus, scanning electron microscopy, X-ray spectroscopy, MTT assay, and cell attachment test were carried out. The obtained data were analyzed for statistical significance using analysis of variance (ANOVA). Double bond conversion could be completed in less than 300 s, while the compression modulus of BTCM decreased with the increase in CMA content (30 wt%, 40 wt%, and 50 wt%). After being soaked in Ca(NO3)2 and Na2HPO4 solutions alternatively, dense HA crystals were found on the surface of the dental resin which contained CMA. The amount of HA increased with the increase in CMA content. The MTT results indicated that BTCM possesses good biocompatibility, while the cell adhesion and proliferation investigation demonstrated that L929 cells can adhere and proliferate well on the surface of BTM. Thus, our approach provides a straightforward, cost-effective, and environmentally friendly solution that has the potential for immediate clinical use.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3