FeIII Chelated with Humic Acid with Easy Synthesis Conditions and Good Performance as Anode Materials for Lithium-Ion Batteries

Author:

Zhang Hao1,Wang Youkui1,Zhao Ruili1,Kou Meimei1,Guo Mengyao1,Xu Ke1,Tian Gang2ORCID,Wei Xinting2,Jiang Song1,Yuan Qing13ORCID,Zhao Jinsheng13ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China

2. Shandong Tianyi New Energy Co., Ltd., Liaocheng 252059, China

3. Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China

Abstract

In this work, we prepared a green, cheap material by chelating humic acid with ferric ions (HA-Fe) and used it as an anode material in LIBs for the first time. From the SEM, TEM, XPS, XRD, and nitrogen adsorption–desorption experimental results, it was found that the ferric ion can chelate with humic acid successfully under mild conditions and can increase the surface area of materials. Taking advantage of the chelation between the ferric ions and HA, the capacity of HA-Fe is 586 mAh·g−1 at 0.1 A·g−1 after 1000 cycles. Moreover, benefitting from the chelation effect, the activation degree of HA-Fe (about 8 times) is seriously improved compared with pure HA material (about 2 times) during the change–discharge process. The capacity retention ratio of HA-Fe is 55.63% when the current density increased from 0.05 A·g−1 to 1 A·g−1, which is higher than that of HA (32.55%) and Fe (24.85%). In the end, the storage mechanism of HA-Fe was investigated with ex-situ XPS measurements, and it was found that the C=O and C=C bonds are the activation sites for storage Li ions but have different redox voltages.

Funder

National Natural Science Foundation of China

Shandong Province Science and Technology Small and Medium Enterprises Innovation Ability Enhancement Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3