Affiliation:
1. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
2. Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
Abstract
As a kind of energy storage device, a flexible supercapacitor has the characteristics of high capacity, fast charge/discharge rate, good stability, portability and softness. Conductive polymer polypyrrole (PPy) can be used as an electrode material for supercapacitors due to its environmental friendliness, simple synthesis process, good conductivity and potential for large-scale production. However, pristine PPy inevitably suffers from structural rupture due to repeated doping/de-doping during charge and discharge processes, which in turn impairs its cycle stability. In general, compounding with flexible substrates like soft carbon materials, cellulose or nylon fabric, is a good strategy to weaken the inner stress and restrain the structure pulverization of PPy. Herein, cellulose is utilized as a soft substrate to compound with PPy based on the electrochemical oxidation of polypyrrole. The interfacial electrodeposition method can successfully obtain a smooth, uniform and flexible PPy/cellulose composite film, which shows good conductivity. The assembled symmetric supercapacitor with PPy/cellulose film has an optimized specific capacitance of 256.1 mF cm−2, even after 10,000 cycles at a current density of 1 mA cm−2. Furthermore, there is no significant capacitance loss even after 180° bending of the device. This work provides a new means to prepare flexible, low-cost, environmentally friendly and high-performance electrode materials for energy conversion and storage systems.
Funder
Research Project of Hainan Province
National Science Foundation of China
Guangdong Province Key Discipline Construction Project
Innovation Team of Universities of Guangdong Province
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献