The Effect of Rotary Friction Welding Conditions on the Microstructure and Mechanical Properties of Ti6Al4V Titanium Alloy Welds

Author:

Gavalec Matúš1,Barenyi Igor1,Krbata Michal1ORCID,Kohutiar Marcel1ORCID,Balos Sebastian2,Pecanac Milan2

Affiliation:

1. Faculty of Special Technology, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia

2. Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

The main task that the article introduces is the experimental study of how the geometry of contact surfaces affects the quality and mechanical properties of a rotary friction weld (RFW), as well as the findings of whether the RFW technology is suitable for the titanium alloy Ti6Al4V. The experiments were carried out for specimens with a diameter of 10 mm and were performed at 900 RPM. Three types of geometry were proposed for the RFW process: flat on flat, flat on 37.5° and flat on 45°. Based on these results, the best tested flat geometry was selected from the perspective of quality and economic efficiency. The welded joints were subjected to microstructural analysis, tensile testing, microhardness testing, and fractography, as well as spectral analysis of the fracture surface and EDS map analysis of oxygen. The flat geometry of the contact surface resulted in the least saturation with interstitial elements from the atmosphere. Fracturing in the RFW zone led to a brittle fracture with a certain proportion of plastic deformation. A pure ductile fracture occurred in specimens fractured in the HAZ region, where the difference in UTS values compared to specimens fractured by a brittle fracture mechanism was not significant. The average UTS value was 478 MPa.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3