Improving the Performance of Vegetable Leaf Wetness Duration Models in Greenhouses Using Decision Tree Learning

Author:

Wang Hui,Sanchez-Molina Jorge,Li Ming,Rodríguez Díaz FranciscoORCID

Abstract

Leaf wetness duration (LWD) is a key driving variable for peat and disease control in greenhouse management, and depends upon irrigation, rainfall, and dewfall. However, LWD measurement is often replaced by its estimation from other meteorological variables, with associated uncertainty due to the modelling approach used and its calibration. This study uses the decision learning tree method (DLT) for calibrating four LWD models—RH threshold model (RHM), the dew parameterization model (DPM), the classification and regression tree model (CART) and the neural network model (NNM)—whose performances in reproducing measured data are assessed using a large dataset. The relative importance of input variables in contributing to LWD estimation is also computed for the models tested. The LWD models were evaluated at two different greenhouse locations: in a Chinese (CN) greenhouse over three planting seasons (April 2014–October 2015) and in a Spanish (ES) greenhouse over four planting seasons (April 2016–February 2018). Based on multi-evaluation indicators, the models were given a ranking for their assessment capabilities during calibration (in the Spanish greenhouse from April 2016 to December 2016 and in the Chinese greenhouse from April 2014 to November 2014). The models were then evaluated on an independent set of data, and the obtained areas under the receiver operating characteristic curve (AUC) of the LWD models were over 0.73. Therein, the best LWD model in this case was the NNM, with positive predict values (PPVs) of 0.82 (SP) and 0.90 (CN), and mean absolute errors (MAEs) of 1.85 h (SP) and 1.30 h (CN). Consequently, the DLT can decrease LWD estimation error by calibrating the model threshold and choosing black box model input variables.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3