An Artificial Compressibility Method for 1D Simulation of Open-Channel and Pressurized-Pipe Flow

Author:

Hodges Ben R.ORCID

Abstract

Piping systems (e.g., storm sewers) that transition between free-surface flow and surcharged flow are challenging to model in one-dimensional (1D) networks as the continuity equation changes from hyperbolic to elliptic as the water surface reaches the pipe ceiling. Previous network models are known to have poor mass conservation or unpredictable convergence behavior at such transitions. To address this problem, a new algorithm is developed for simulating unsteady 1D flow in closed conduits with both free-surface and surcharged flow. The shallow-water (hydrostatic) approximation is used as the governing equations. The artificial compressibility (AC) method is implemented as a dual-time-stepping discretization for a finite-volume solver with timescale interpolation used for face reconstruction. A new formulation for the AC celerity parameter is proposed such that the AC celerity matches the equivalent gravity wave speed for the local hydraulic head—which has some similarities to the classic Preissmann Slot used to approximate pressurized flow in conduits. The new approach allows the AC celerity to be set locally by the flow (i.e., non-uniform in space) and removes it as a free parameter of the AC solution method. The derivation of the AC method provides for only a minor change in the form of the solution equations when a computational element switches from free-surface to surcharged. The new solver is tested for both unsteady free-surface (supercritical, subcritical) and surcharged flow transitions in a circular pipe and is implemented in an open-source Python code available under the name “PipeAC.” The results are compared to laboratory experiments that include rapid flow changes due to opening/closing of gates. Results show that the new algorithm is satisfactory for 1D representation of unsteady transition behavior with two caveats: (i) sufficient grid resolution must be applied, and (ii) the shallow-water equation approximations (hydrostatic, single-fluid) limit the accuracy of the solution with regards to the celerity of the turbulent unsteady bore that propagates upstream. This research might benefit any piping network model that must smoothly handle unsteady transitions from free surface to surcharged flow.

Funder

U.S. Environmental Protection Agency

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized, Dynamic, and Transient-Storage Form of the Preissmann Slot;Journal of Hydraulic Engineering;2023-11

2. A conservative finite volume method for incompressible two-phase flows on unstructured meshes;Numerical Heat Transfer, Part B: Fundamentals;2023-07-21

3. The impact of blockage on the performance of canal coverage structures;Journal of Engineering and Applied Science;2023-07-07

4. A novel Godunov-type scheme for free-surface flows with artificial compressibility;Computer Methods in Applied Mechanics and Engineering;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3