Evaluation of CYGNSS Observations for Flood Detection and Mapping during Sistan and Baluchestan Torrential Rain in 2020

Author:

Rajabi Mahmoud,Nahavandchi HosseinORCID,Hoseini MostafaORCID

Abstract

Flood detection and produced maps play essential roles in policymaking, planning, and implementing flood management options. Remote sensing is commonly accepted as a maximum cost-effective technology to obtain detailed information over large areas of lands and oceans. We used remote sensing observations from Global Navigation Satellite System-Reflectometry (GNSS-R) to study the potential of this technique for the retrieval of flood maps over the regions affected by the recent flood in the southeastern part of Iran. The evaluation was made using spaceborne GNSS-R measurements over the Sistan and Baluchestan provinces during torrential rain in January 2020. This area has been at a high risk of flood in recent years and needs to be continuously monitored by means of timely observations. The main dataset was acquired from the level-1 data product of the Cyclone Global Navigation Satellite System (CYGNSS) spaceborne mission. The mission consisted of a constellation of eight microsatellites with GNSS-R sensors onboard to receive forward-scattered GNSS signals from the ocean and land. We first focused on data preparation and eliminating the outliers. Afterward, the reflectivity of the surface was calculated using the bistatic radar equations formula. The flooded areas were then detected based on the analysis of the derived reflectivity. Images from Moderate-Resolution Imaging Spectroradiometer (MODIS) were used for evaluation of the results. The analysis estimated the inundated area of approximately 19,644 km2 (including Jaz-Murian depression) to be affected by the flood in the south and middle parts of the Sistan and Baluchestan province. Although the main mission of CYGNSS was to measure the ocean wind speed in hurricanes and tropical cyclones, we showed the capability of detecting floods in the study area. The sensitivity of the spaceborne GNSS-R observations, together with the relatively short revisit time, highlight the potential of this technique to be used in flood detection. Future GNSS-R missions capable of collecting the reflected signals from all available multi-GNSS constellations would offer even more detailed information from the flood-affected areas.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference50 articles.

1. Remote sensing for natural disaster management;Van Westen;Int. Arch. Photogramm. Remote Sens.,2000

2. Vulnerability of human settlements to flood risk in the core area of Ibadan metropolis, Nigeria

3. Integrated Flood Risk Management in Asia,2005

4. Environmental impacts of land subsidence in urban areas of Indonesia;Abidin,2015

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3