In Silico Design Strategies for the Production of Target Chemical Compounds Using Iterative Single-Level Linear Programming Problems

Author:

Shirai TomokazuORCID,Kondo Akihiko

Abstract

The optimization of metabolic reaction modifications for the production of target compounds is a complex computational problem whose execution time increases exponentially with the number of metabolic reactions. Therefore, practical technologies are needed to identify reaction deletion combinations to minimize computing times and promote the production of target compounds by modifying intracellular metabolism. In this paper, a practical metabolic design technology named AERITH is proposed for high-throughput target compound production. This method can optimize the production of compounds of interest while maximizing cell growth. With this approach, an appropriate combination of metabolic reaction deletions can be identified by solving a simple linear programming problem. Using a standard CPU, the computation time could be as low as 1 min per compound, and the system can even handle large metabolic models. AERITH was implemented in MATLAB and is freely available for non-profit use.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3