Free Layer Thickness Dependence of the Stability in Co2(Mn0.6Fe0.4)Ge Heusler Based CPP-GMR Read Sensor for Areal Density of 1 Tb/in2

Author:

Khunkitti PiratORCID,Siritaratiwat Apirat,Pituso KotchakornORCID

Abstract

Current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read sensors based on Heusler alloys are promising candidates for ultrahigh areal densities of magnetic data storage technology. In particular, the thickness of reader structures is one of the key factors for the development of practical CPP-GMR sensors. In this research, we studied the dependence of the free layer thickness on the stability of the Co2(Mn0.6Fe0.4)Ge Heusler-based CPP-GMR read head for an areal density of 1 Tb/in2, aiming to determine the appropriate layer thickness. The evaluations were done through simulations based on micromagnetic modelling. The reader stability indicators, including the magnetoresistance (MR) ratio, readback signal, dibit response asymmetry parameter, and power spectral density profile, were characterized and discussed. Our analysis demonstrates that the reader with a free layer thickness of 3 nm indicates the best stability performance for this particular head. A reasonably large MR ratio of 26% was obtained by the reader having this suitable layer thickness. The findings can be utilized to improve the design of the CPP-GMR reader for use in ultrahigh magnetic recording densities.

Funder

Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3