The Fabrication of Amino Acid Incorporated Nanoflowers with Intrinsic Peroxidase-like Activity and Its Application for Efficiently Determining Glutathione with TMB Radical Cation as Indicator

Author:

Jiang Ning,Zhang ChuangORCID,Li Meng,Li Shuai,Hao Zhili,Li ZhengqiangORCID,Wu ZhuofuORCID,Li Chen

Abstract

The assessment of glutathione (GSH) levels is associated with early diagnostics and pathological analysis for various disorders. Among all kinds of techniques for detecting GSH, the colorimetric assay relying on the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) catalyzed by many nanomaterials with peroxidase-like activity attracts increasing attention owing to its outstanding merits, such as high sensitivity and high selectivity. However, the aggregation between the nanomaterials severely hinders the entrance of TMB into the “active site” of these peroxidase mimics. To address this problem, the D-amino acid incorporated nanoflowers possessing peroxidase-like activity with a diameter of 10–15 μm, TMB and H2O2 were employed to establish the detection system for determining the level of glutathione. The larger diameter size of the hybrid nanoflowers substantially averts the aggregation between them. The results confirm that the hybrid nanoflowers detection system presents a low limit of detection, wide linear range, perfect selectivity, good storage stability and desired operational stability for the detection of GSH relying on the intrinsic peroxidase-like activity and favorable mechanical stability of the hybrid nanoflowers, indicating that the hybrid nanoflowers detection system has tremendous application potential in clinical diagnosis and treatment.

Funder

National Natural Science Foundation of China

Scientific Research Project of the Education Department of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3