Progress in Non-Traditional Processing for Fabricating Superhydrophobic Surfaces

Author:

Shen Dili,Ming Wuyi,Ren Xinggui,Xie Zhuobin,Liu Xuewen

Abstract

When the water droplets are on some superhydrophobic surfaces, the surface only needs to be inclined at a very small angle to make the water droplets roll off. Hence, building a superhydrophobic surface on the material substrate, especially the metal substrate, can effectively alleviate the problems of its inability to resist corrosion and easy icing during use, and it can also give it special functions such as self-cleaning, lubrication, and drag reduction. Therefore, this study reviews and summarizes the development trends in the fabrication of superhydrophobic surface materials by non-traditional processing techniques. First, the principle of the superhydrophobic surfaces fabricated by laser beam machining (LBM) is introduced, and the machining performances of the LBM process, such as femtosecond laser, picosecond laser, and nanosecond laser, for fabricating the surfaces are compared and summarized. Second, the principle and the machining performances of the electrical discharge machining (EDM), for fabricating the superhydrophobic surfaces, are reviewed and compared, respectively. Third, the machining performances to fabricate the superhydrophobic surfaces by the electrochemical machining (ECM), including electrochemical oxidation process and electrochemical reduction process, are reviewed and grouped by materials fabricated. Lastly, other non-traditional machining processes for fabricating superhydrophobic surfaces, such as ultrasonic machining (USM), water jet machining (WJM), and plasma spraying machining (PSM), are compared and summarized. Moreover, the advantage and disadvantage of the above mentioned non-traditional machining processes are discussed. Thereafter, the prospect of non-traditional machining for fabricating the desired superhydrophobic surfaces is proposed.

Funder

Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3