Genome-Wide Identification and Expression Analysis of the R2R3-MYB Gene Family in Rubber Trees

Author:

Liu Mingyang1,Yang Hong1,Fan Songle1,Guo Bingbing1,Dai Longjun1,Wang Lifeng1ORCID,Wang Meng23

Affiliation:

1. Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

2. Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China

3. School of Plant Protection, Hainan University, Haikou 570228, China

Abstract

The plant MYB transcription factor family featured as highly conserved DNA-binding domains consisting of 1 to 4 imperfect repeats (R). Increasing evidence indicates that MYB genes participates in growth, differentiation, metabolism, and biotic and abiotic stress responses. However, the functions of MYB genes in the rubber tree remain to be deeply elucidated, especially R2R3-MYB gene family. In this study, molecular biology, bioinformatics, and qRT-PCR were used to identify and analyze HbR2R3-MYB gene family members in the rubber tree. A total of 132 members of the R2R3-MYB gene family were identified in the rubber tree based on genome-wide level. Most of the HbR2R3-MYBs were mapped to 17 rubber tree chromosomes except four genes. A phylogenetic analysis divided all the HbR2R3-MYBs into 20 subgroups with Arabidopsis thaliana. MEME analysis showed that the protein of HbR2R3-MYBs was characterized by 9 conserved motifs. Twenty-six representative R2R3 HbMYBs from different subgroups were selected for expression profiles analysis and the results revealed that the HbR2R3-MYBs members showed various expression patterns in different tissues, powdery mildew-infected and ethylene treatment, implying the diversity of their functions in rubber trees. These results provide fundamental knowledge for further studying the response of the HbR2R3-MYB family to stress and regulation latex flow in rubber tree.

Funder

Hainan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3