Effects of Tree Functional Traits on Soil Respiration in Tropical Forest Plantations

Author:

Ontong Natthapong1,Poolsiri Roongreang2ORCID,Diloksumpun Sapit2ORCID,Staporn Duriya3,Jenke Michael2

Affiliation:

1. Graduate School, Kasetsart University, Bangkok 10900, Thailand

2. Department of Silviculture, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand

3. Forest Research and Development Bureau, Royal Forest Department, Chatuchak, Bangkok 10900, Thailand

Abstract

Fast-growing tree species, including Eucalyptus sp. and Acacia sp., are widely used to rehabilitate degraded tropical forestland quickly, while mitigating climate change. However, the extent of carbon losses through soil respiration (RS) often remains unknown. Moreover, the promotion of these non-native species has raised concerns over their impact on other ecosystem services, including N2-fixation-induced soil acidification and nutrient cycling. This study compared two non-native and native species, with one of each being N2-fixing, growing in 11-year-old monospecific plantations in NE Thailand. Hourly RS was measured monthly over one year and combined with stand characteristics, as well as soil microclimatic and chemical properties. Mixed-effects models were used to capture this hierarchical, diurnal, and seasonal dataset. RS rates were influenced by soil temperature and moisture following a parabolic relation, and negatively affected by acidity. Overall, RS varied significantly according to species-specific microclimates and productivity. Despite the high input of organic matter, non-native species failed to ameliorate extreme soil moisture or temperature; limiting microbial decomposition and reducing RS. Hopea odorata produced moderate levels of carbon sequestration, but maintained soil fertility. The choice of tree species can significantly affect carbon sequestration and storage, as well as nutrient cycling, and careful species selection could optimize these ecosystem services.

Funder

the National Research Council of Thailand

the Office of the Ministry of Higher Education, Science, Research, and Innovation

Thailand Science Research and Innovation Center, through the Kasetsart University Reinventing University Program

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3