A New Method of Wheelset Bearing Fault Diagnosis

Author:

Sun Runtao,Yang Jianwei,Yao Dechen,Wang JinhaiORCID

Abstract

During the movement of rail trains, trains are often subjected to harsh operating conditions such as variable speed and heavy loads. It is therefore vital to find a solution for the issue of rolling bearing malfunction diagnostics in such circumstances. This study proposes an adaptive technique for defect identification based on multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) and Ramanujan subspace decomposition. MOMEDA optimally filters the signal and enhances the shock component corresponding to the defect, after which the signal is automatically decomposed into a sequence of signal components using Ramanujan subspace decomposition. The method’s benefit stems from the flawless integration of the two methods and the addition of the adaptable module. It addresses the issues that the conventional signal decomposition and subspace decomposition methods have with redundant parts and significant inaccuracies in fault feature extraction for the vibration signals under loud noise. Finally, it is evaluated through simulation and experimentation in comparison to the current widely used signal decomposition techniques. According to the findings of the envelope spectrum analysis, the novel technique can precisely extract the composite flaws that are present in the bearing, even when there is significant noise interference. Additionally, the signal-to-noise ratio (SNR) and fault defect index were introduced to quantitatively demonstrate the novel method’s denoising and potent fault extraction capabilities, respectively. The approach works well for identifying bearing faults in train wheelsets.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3