Resource Cluster-Based Resource Search and Allocation Scheme for Vehicular Clouds in Vehicular Ad Hoc Networks

Author:

Choi Hyunseok1ORCID,Lee Yoonhyeong2ORCID,Kim Gayeong3ORCID,Lee Euisin3ORCID,Nam Youngju1ORCID

Affiliation:

1. Research Institute for Computer and Information Communication, Chungbuk National University, Cheongju 28644, Republic of Korea

2. EW ELINT Technology R&D, LIG Nex1, Seongnam 13486, Republic of Korea

3. School of Information Communication Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea

Abstract

Vehicular clouds represent an appealing approach, leveraging vehicles’ resources to generate value-added services. Thus, efficiently searching for and allocating resources is a challenge for the successful construction of vehicular clouds. Many recent schemes have relied on hierarchical network architectures using clusters to address this challenge. These clusters are typically constructed based on vehicle proximity, such as being on the same road or within the same region. However, this approach struggles to rapidly search for and consistently allocate resources, especially considering the diverse resource types and varying mobility of vehicles. To address these limitations, we propose the Resource Cluster-based Resource Search and Allocation (RCSA) scheme. RCSA constructs resource clusters based on resource types rather than vehicle proximity. This allows for more efficient resource searching and allocation. Within these resource clusters, RCSA supports both intra-resource cluster search for the same resource type and inter-resource cluster search for different resource types. In RCSA, vehicles with longer connection times and larger resource capacities are allocated in vehicular clouds to minimize cloud breakdowns and communication traffic. To handle the reconstruction of resource clusters due to vehicle mobility, RCSA implements mechanisms for replacing Resource Cluster Heads (RCHs) and managing Resource Cluster Members (RCMs). Simulation results validate the effectiveness of RCSA, demonstrating its superiority over existing schemes in terms of resource utilization, allocation efficiency, and overall performance.

Funder

National Research Foundation of Korea

Chungbuk National University BK21 program

Publisher

MDPI AG

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3