Characterization of Single-Chain Fv Fragments of Neutralizing Antibodies to Rabies Virus Glycoprotein

Author:

Yumoto KoheiORCID,Arisaka Tomoaki,Okada KazumaORCID,Aoki Kyosuke,Ose Toyoyuki,Masatani TatsunoriORCID,Sugiyama Makoto,Ito NaotoORCID,Fukuhara Hideo,Maenaka KatsumiORCID

Abstract

Rabies has almost a 100% case-fatality rate and kills more than 59,000 people annually around the world. There is no established treatment for rabies. The rabies virus (RABV) expresses only the glycoprotein (RABVG) at the viral surface, and it is the target for the neutralizing antibodies. We previously established mouse monoclonal antibodies, 15–13 and 12–22, which showed neutralizing activity against the RABV, targeting the sequential and conformational epitopes on the RABVG, respectively. However, the molecular basis for the neutralizing activity of these antibodies is not yet fully understood. In this study, we evaluated the binding characteristics of the Fab fragments of the 15–13 and 12–22 antibodies. The recombinant RABVG protein, in prefusion form for the binding analysis, was prepared by the silkworm–baculovirus expression system. Biolayer interferometry (BLI) analysis indicated that the 15–13 Fab interacts with the RABVG, with a KD value at the nM level, and that the 12–22 Fab has a weaker binding affinity (KD ~ μM) with the RABVG compared to the 15–13 Fab. Furthermore, we determined the amino acid sequences of both the antibodies and the designed single-chain Fv fragments (scFvs) of the 15–13 and 12–22 antibodies as another potential biopharmaceutical for targeting rabies. The 15–13 and 12–22 scFvs were successfully prepared by the refolding method and were shown to interact with the RABVG at the nM level and the μM level of the KD, respectively. These binding characteristics were similar to that of each Fab. On the other hand, differential scanning fluorometry (DSF) revealed that the thermal stability of these scFvs decreases compared to their Fabs. While the improvement of the stability of scFvs will still be required, these results provide insights into the neutralizing activity and the potential therapeutic use of antibody fragments for RABV infection.

Funder

Japan Agency for Medical Research and Development

Ministry of Education, Culture, Sports, Science and Technology

Takeda

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference29 articles.

1. Rabies virus glycoprotein. II. Biological and serological characterization

2. Estimating the Global Burden of Endemic Canine Rabies;Hampson;PLoS Negl. Trop. Dis.,2015

3. Rabieshttps://www.who.int/health-topics/rabies#tab=tab_1

4. Economic Issues in Postexposure Rabies Treatment

5. Rabies Vaccines: WHO Position Paper—April 2018;Wkly. Epidemiol. Rec. Relev. Épidémiologique Hebd.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3