Wireless Power Transfer Positioning System with Wide Range Direction-Guided Based on Symmetrical Triple-U Auxiliary Pad

Author:

Yang Yi,Cao Guimei,Zhang Ge,Xie Shiyun

Abstract

An important area of research in electric vehicle wireless power transfer systems is the detection of the secondary pad, which is vital evidence to determine whether the vehicle is in the effective charging area. However, the detection based on sensors mostly will reconstruct the vehicle structure and has a limit on versatility in all kinds of vehicles and the applicability of magnetic couplers and the influence on the primary pad. Therefore, an auxiliary pad structure and corresponding positioning method for offset estimation utilizing the existing inverter and secondary pad in the vehicle system are proposed. Firstly, to satisfy the needs of different positioning heights and avoid the effect on the primary pad, a triple-U positioning auxiliary pad is designed to assist positioning. Secondly, the direction-guided trajectory and detection algorithm are proposed to modify the vehicle location in real-time after analyzing the corresponding equivalent mutual inductance feature trajectory, according to the magnetic field characteristics of various typical magnetic couplers intervened by the proposed triple-U auxiliary pad. Finally, a prototype system is built to validate the applicability and feasibility of the triple-U auxiliary pad, where the positioning accuracy is within 10 mm, and the maximum recognizable recognition range can reach 300 mm × 300 mm, and the direction-guided trajectory is accurate, which can satisfy the actual positioning requirements of electric vehicles.

Funder

Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

Subject

Automotive Engineering

Reference25 articles.

1. Overview of Static Wireless Charging Technology for Electric Vehicles: Part 2;Wu;Trans. China Electrotech. Soc.,2020

2. A DDQ/DD-Coupler-Based Wireless Power Transfer System for Electric Vehicles (EV) Charging Featuring High Misalignment Tolerance;Tingwei;Proceedings of the CSEE,2022

3. An Electric Vehicle (EV)-oriented Wireless Power Transfer System Featuring High Misalignment Tolerance;Wang;Proceedings of the CSEE

4. Efficiency optimization for wireless dynamic charging system with overlapped DD coil arrays;Liu;IEEE Appl. Power Electron. Conf. Expo. (APEC),2017

5. Misalignment-tolerant Compact Electric Vehicle Wireless Charging System by Using Hybrid Topology;Yiming;Proc. CSEE,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3