Electric Vehicle Simulations Based on Kansas-Centric Conditions

Author:

Simpson TylerORCID,Bousfield George,Wohleb AustinORCID,Depcik ChristopherORCID

Abstract

Range anxiety is a significant contributor to consumer reticence when purchasing electric vehicles (EVs). To alleviate this concern, new commercial EVs readily achieve over 200 miles of range, as found by the United States Environmental Protection Agency (EPA). However, this range, measured under idealized conditions, is often not encountered in real-world conditions. As a result, this effort describes the simplest model that incorporates all key factors that affect the range of an EV. Calibration of the model to EPA tests found an average deviation of 0.45 and 0.57 miles for highway and city ranges, respectively, among seven commercial EVs. Subsequent predictions found significant losses based on the impact of road grade, wind, and vehicle speed over a Kansas interstate highway. For cabin conditioning, up to 57.8% and 37.5% losses in range were found when simulating vehicles at 20 °F and 95 °F, respectively. Simulated aging of the vehicle battery pack showed range losses up to 53.1% at 100,000 miles. Model extensions to rain and snow illustrated corresponding losses based on the level of precipitation on the road. All model outcomes were translated into an Excel spreadsheet that can be used to predict the range of a generic EV over Kansas-centric roads.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference74 articles.

1. A survey-based assessment of how existing and potential electric vehicle owners perceive range anxiety

2. Survey: Electric Vehicles’ Range Jumps to Top of Priorities for Consumers https://www.autolist.com/news-and-analysis/2021-survey-electric-vehicles

3. How Much Electriccar Range Is ‘Enough’? 300 Miles Much Better Than 200 Miles: Survey https://www.greencarreports.com/news/1112298_how-much-electric-car-range-is-enough-300-miles-much-better-than-200-miles-survey

4. Battery Electric Vehicle Energy Consumption and Range Test Procedure

5. Differences in Energy Consumption in Electric Vehicles: An Exploratory Real-World Study in Beijing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3