Elucidation of Antiviral and Antioxidant Potential of C-Phycocyanin against HIV-1 Infection through In Silico and In Vitro Approaches

Author:

Jadaun Pratiksha,Seniya Chandrabhan,Pal Sudhir KumarORCID,Kumar SanjitORCID,Kumar Pramod,Nema VijayORCID,Kulkarni Smita S,Mukherjee AnupamORCID

Abstract

Antiretroviral therapy is the single existing therapy for patients infected with HIV; however, it has drawbacks in terms of toxicity and resistance. Thus, there is a continuous need to explore safe and efficacious anti-retroviral agents. C-Phycocyanin (C-PC) is a phycobiliprotein, which has been known for various biological properties; however, its effect on HIV-1 replication needs revelation. This study aimed to identify the inhibitory effects of C-PC on HIV-1 using in vitro and in silico approaches and to assess its role in the generation of mitochondrial reactive oxygen species (ROS) during HIV-1 infection. In vitro anti-HIV-1 activity of C-PC was assessed on TZM-bl cells through luciferase gene assay against four different clades of HIV-1 strains in a dose-dependent manner. Results were confirmed in PBMCs, using the HIV-1 p24 antigen assay. Strong associations between C-PC and HIV-1 proteins were observed through in silico molecular simulation-based interactions, and the in vitro mechanistic study confirmed its target by inhibition of reverse transcriptase and protease enzymes. Additionally, the generation of mitochondrial ROS was detected by the MitoSOX and DCF-DA probe through confocal microscopy. Furthermore, our results confirmed that C-PC treatment notably subdued the fluorescence in the presence of the virus, thus reduction of ROS and the activation of caspase-3/7 in HIV-1-infected cells. Overall, our study suggests C-PC as a potent and broad in vitro antiviral and antioxidant agent against HIV-1 infection.

Funder

Department of Health Research (DHR) Women Scientist Grant

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3