Olanzapine Ameliorates Ischemic Stroke-like Pathology in Gerbils and H2O2-Induced Neurotoxicity in SH-SY5Y Cells via Inhibiting the MAPK Signaling Pathway

Author:

Islam Md SadikulORCID,Shin Ha-Young,Yoo Yeo-Jin,Kim Ryunhee,Jang Young-Jin,Akanda Md RashedunnabiORCID,Tae Hyun-JinORCID,Kim In-Shik,Ahn Dongchoon,Park Byung-YongORCID

Abstract

Olanzapine (OLNZ) is used to treat psychotic disorders. To look into the neurological basis of this phenomenon, we investigated the neuroprotective effects of OLNZ in gerbils and SH-SY5Y cells. Gerbils were subjected to transient global cerebral ischemia (TGCI) by blocking both common carotid arteries, and OLNZ (10 mg/kg) was injected intraperitoneally. Hydrogen peroxide (H2O2) was used to induce oxidative-stress-mediated damage in the SH-SY5Y cells. The results indicated that OLNZ administration markedly reduced neuron damage and glial cell triggering within CA1 zone of the hippocampus. We used RNA sequencing to assess the numbers of up-and downregulated genes involved in TGCI. We found that OLNZ treatment downregulated the expression of complement-component-related genes and the expression of mitogen-activated protein kinases (MAPKs) in the hippocampus. In cells, OLNZ co-treatment significantly improved cell viability and reduced lactate dehydrogenase (LDH), and reactive oxygen species (ROS) generation. Expression of antioxidant superoxide dismutase-1,2 enzymes (SOD-1, SOD-2) was also intensely upregulated by OLNZ, while the expression of MAPKs and NF-κB were reduced. Co-incubation with OLNZ also regulated apoptosis-related proteins Bax/Bcl-2 expression. Finally, the results demonstrated that treatment with OLNZ showed neuroprotective effects and that the MAPK pathway could involve in the protective effects.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3