Circadian Clocks, Redox Homeostasis, and Exercise: Time to Connect the Dots?

Author:

McClean Conor,Davison Gareth W.

Abstract

Compelling research has documented how the circadian system is essential for the maintenance of several key biological processes including homeostasis, cardiovascular control, and glucose metabolism. Circadian clock disruptions, or losses of rhythmicity, have been implicated in the development of several diseases, premature ageing, and are regarded as health risks. Redox reactions involving reactive oxygen and nitrogen species (RONS) regulate several physiological functions such as cell signalling and the immune response. However, oxidative stress is associated with the pathological effects of RONS, resulting in a loss of cell signalling and damaging modifications to important molecules such as DNA. Direct connections have been established between circadian rhythms and oxidative stress on the basis that disruptions to circadian rhythms can affect redox biology, and vice versa, in a bi-directional relationship. For instance, the expression and activity of several key antioxidant enzymes (SOD, GPx, and CAT) appear to follow circadian patterns. Consequently, the ability to unravel these interactions has opened an exciting area of redox biology. Exercise exerts numerous benefits to health and, as a potent environmental cue, has the capacity to adjust disrupted circadian systems. In fact, the response to a given exercise stimulus may also exhibit circadian variation. At the same time, the relationship between exercise, RONS, and oxidative stress has also been scrutinised, whereby it is clear that exercise-induced RONS can elicit both helpful and potentially harmful health effects that are dependent on the type, intensity, and duration of exercise. To date, it appears that the emerging interface between circadian rhythmicity and oxidative stress/redox metabolism has not been explored in relation to exercise. This review aims to summarise the evidence supporting the conceptual link between the circadian clock, oxidative stress/redox homeostasis, and exercise stimuli. We believe carefully designed investigations of this nexus are required, which could be harnessed to tackle theories concerned with, for example, the existence of an optimal time to exercise to accrue physiological benefits.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3