The Inhibitory Role of Hydrogen Sulfide in UII-Induced Cardiovascular Effects and the Underlying Signaling Pathways

Author:

Zhang Na-Na,Xu Hai-Yan,Liu Xiao-Ni,Chen Yi-FanORCID,Xia Chun-Mei,Wu Xing-Zhong,Lu Ning

Abstract

Urotensin II (UII) could increase blood pressure and heart rate via increased central reactive oxygen species (ROS) levels. We reported previously that hydrogen sulfide (H2S) exerts an antihypertensive effect by suppressing ROS production. The aim of the current study is to further examine the effects of endogenous and exogenous H2S on UII-induced cardiovascular effects by using an integrated physiology approach. We also use cell culture and molecular biological techniques to explore the inhibitory role of H2S on UII-induced cardiovascular effects. In this study, we found that cystathionine-β-synthase (CBS), the main H2S synthesizing enzyme in CNS, was expressed in neuronal cells of the rostral ventrolateral medulla (RVLM) area. Cellular distribution of CBS and urotensin II receptor (UT) in SH-SY5Y cells that are confirmed as glutamatergic were identified by immunofluorescent and Western blots assay. In Sprague–Dawley rats, administration of UII into the RVLM resulted in an increase in mean arterial pressure (MAP), heart rate (HR), ROS production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and phosphorylation of p47phox, extracellular signal-regulated protein kinase (ERK)1/2 and p38MAPK, but not stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK). These effects of UII were attenuated by application into the RVLM of endogenous (L-cysteine, SAM) or exogenous (NaHS) H2S. These results were confirmed in SH-SY5Y cells. UII-induced cardiovascular effects were also significantly abolished by pretreatment with microinjection of Tempol, Apocynin, SB203580, or PD98059 into the RVLM. Preincubated SH-SY5Y cells with Apocynin before administration of UII followed by Western blots assay showed that ROS is in the upstream of p38MAPK/ERK1/2. Gao activation assay in SH-SY5Y cells suggested that H2S may exert an inhibitory role on UII-induced cardiovascular effects by inhibiting the activity of Gαo. These results suggest that both endogenous and exogenous H2S attenuate UII-induced cardiovascular effects via Gαo-ROS-p38MAPK/ERK1/2 pathway.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3