Integrated Metabolomics and Transcriptomic Analysis of Hepatopancreas in Different Living Status Macrobrachium nipponense in Response to Hypoxia

Author:

Xu LeiORCID,Zhang Wenyi,Qiao Hui,Jiang Sufei,Xiong Yiwei,Jin Shubo,Gong Yongsheng,Fu Hongtuo

Abstract

As the basic element of aerobic animal life, oxygen participates in most physiological activities of animals. Hypoxia stress is often the subject of aquatic animal research. Macrobrachium nipponense, an economically important aquatic animal in southern China, has been affected by hypoxia for many years and this has resulted in a large amount of economic loss due to its sensitivity to hypoxia; Metabolism and transcriptome data were combined in the analysis of the hepatopancreas of M. nipponense in different physiological states under hypoxia; A total of 108, 86, and 48 differentially expressed metabolites (DEMs) were found in three different comparisons (survived, moribund, and dead shrimps), respectively. Thirty-two common DEMs were found by comparing the different physiological states of M. nipponense with the control group in response to hypoxia. Twelve hypoxia-related genes were identified by screening and analyzing common DEMs. GTP phosphoenolpyruvate carboxykinase (PEPCK) was the only differentially expressed gene that ranked highly in transcriptome analysis combined with metabolome analysis. PEPCK ranked highly both in transcriptome analysis and in combination with metabolism analysis; therefore, it was considered to have an important role in hypoxic response. This manuscript fills the one-sidedness of the gap in hypoxia transcriptome analysis and reversely deduces several new genes related to hypoxia from metabolites. This study contributes to the clarification of the molecular process associated with M. nipponense under hypoxic stress.

Funder

National Key R&D Program of China

Jiangsu Agricultural Industry Technology System

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3