Cathelicidin Attenuates Hyperoxia-Induced Lung Injury by Inhibiting Ferroptosis in Newborn Rats

Author:

Chou Hsiu-ChuORCID,Chen Chung-MingORCID

Abstract

High oxygen concentrations are often required to treat newborn infants with respiratory distress but have adverse effects, such as increased oxidative stress and ferroptosis and impaired alveolarization. Cathelicidins are a family of antimicrobial peptides that exhibit antioxidant activity, and they can reduce hyperoxia-induced oxidative stress. This study evaluated the effects of cathelicidin treatment on lung ferroptosis and alveolarization in hyperoxia-exposed newborn rats. Sprague Dawley rat pups were either reared in room air (RA) or hyperoxia (85% O2) and then randomly given cathelicidin (8 mg/kg) in 0.05 mL of normal saline (NS), or NS was administered intraperitoneally on postnatal days from 1–6. The four groups obtained were as follows: RA + NS, RA + cathelicidin, O2 + NS, and O2 + cathelicidin. On postnatal day 7, lungs were harvested for histological, biochemical, and Western blot analyses. The rats nurtured in hyperoxia and treated with NS exhibited significantly lower body weight and cathelicidin expression, higher Fe2+, malondialdehyde, iron deposition, mitochondrial damage (TOMM20), and interleukin-1β (IL-1β), and significantly lower glutathione, glutathione peroxidase 4, and radial alveolar count (RAC) compared to the rats kept in RA and treated with NS or cathelicidin. Cathelicidin treatment mitigated hyperoxia-induced lung injury, as demonstrated by higher RAC and lower TOMM20 and IL-1β levels. The attenuation of lung injury was accompanied by decreased ferroptosis. These findings indicated that cathelicidin mitigated hyperoxia-induced lung injury in the rats, most likely by inhibiting ferroptosis.

Funder

Taipei Medical University Hospital

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3